3.1973 \(\int (a+b x) (d+e x)^2 (a^2+2 a b x+b^2 x^2)^{3/2} \, dx\)

Optimal. Leaf size=125 \[ \frac {e \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^5 (b d-a e)}{3 b^3}+\frac {\sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^4 (b d-a e)^2}{5 b^3}+\frac {e^2 \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^6}{7 b^3} \]

[Out]

1/5*(-a*e+b*d)^2*(b*x+a)^4*((b*x+a)^2)^(1/2)/b^3+1/3*e*(-a*e+b*d)*(b*x+a)^5*((b*x+a)^2)^(1/2)/b^3+1/7*e^2*(b*x
+a)^6*((b*x+a)^2)^(1/2)/b^3

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {770, 21, 43} \[ \frac {e \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^5 (b d-a e)}{3 b^3}+\frac {\sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^4 (b d-a e)^2}{5 b^3}+\frac {e^2 \sqrt {a^2+2 a b x+b^2 x^2} (a+b x)^6}{7 b^3} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)*(d + e*x)^2*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

((b*d - a*e)^2*(a + b*x)^4*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*b^3) + (e*(b*d - a*e)*(a + b*x)^5*Sqrt[a^2 + 2*a*
b*x + b^2*x^2])/(3*b^3) + (e^2*(a + b*x)^6*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*b^3)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int (a+b x) (d+e x)^2 \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx &=\frac {\sqrt {a^2+2 a b x+b^2 x^2} \int (a+b x) \left (a b+b^2 x\right )^3 (d+e x)^2 \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int (a+b x)^4 (d+e x)^2 \, dx}{a b+b^2 x}\\ &=\frac {\left (b \sqrt {a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac {(b d-a e)^2 (a+b x)^4}{b^2}+\frac {2 e (b d-a e) (a+b x)^5}{b^2}+\frac {e^2 (a+b x)^6}{b^2}\right ) \, dx}{a b+b^2 x}\\ &=\frac {(b d-a e)^2 (a+b x)^4 \sqrt {a^2+2 a b x+b^2 x^2}}{5 b^3}+\frac {e (b d-a e) (a+b x)^5 \sqrt {a^2+2 a b x+b^2 x^2}}{3 b^3}+\frac {e^2 (a+b x)^6 \sqrt {a^2+2 a b x+b^2 x^2}}{7 b^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 157, normalized size = 1.26 \[ \frac {x \sqrt {(a+b x)^2} \left (35 a^4 \left (3 d^2+3 d e x+e^2 x^2\right )+35 a^3 b x \left (6 d^2+8 d e x+3 e^2 x^2\right )+21 a^2 b^2 x^2 \left (10 d^2+15 d e x+6 e^2 x^2\right )+7 a b^3 x^3 \left (15 d^2+24 d e x+10 e^2 x^2\right )+b^4 x^4 \left (21 d^2+35 d e x+15 e^2 x^2\right )\right )}{105 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)*(d + e*x)^2*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(x*Sqrt[(a + b*x)^2]*(35*a^4*(3*d^2 + 3*d*e*x + e^2*x^2) + 35*a^3*b*x*(6*d^2 + 8*d*e*x + 3*e^2*x^2) + 21*a^2*b
^2*x^2*(10*d^2 + 15*d*e*x + 6*e^2*x^2) + 7*a*b^3*x^3*(15*d^2 + 24*d*e*x + 10*e^2*x^2) + b^4*x^4*(21*d^2 + 35*d
*e*x + 15*e^2*x^2)))/(105*(a + b*x))

________________________________________________________________________________________

fricas [A]  time = 0.46, size = 156, normalized size = 1.25 \[ \frac {1}{7} \, b^{4} e^{2} x^{7} + a^{4} d^{2} x + \frac {1}{3} \, {\left (b^{4} d e + 2 \, a b^{3} e^{2}\right )} x^{6} + \frac {1}{5} \, {\left (b^{4} d^{2} + 8 \, a b^{3} d e + 6 \, a^{2} b^{2} e^{2}\right )} x^{5} + {\left (a b^{3} d^{2} + 3 \, a^{2} b^{2} d e + a^{3} b e^{2}\right )} x^{4} + \frac {1}{3} \, {\left (6 \, a^{2} b^{2} d^{2} + 8 \, a^{3} b d e + a^{4} e^{2}\right )} x^{3} + {\left (2 \, a^{3} b d^{2} + a^{4} d e\right )} x^{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^2*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

1/7*b^4*e^2*x^7 + a^4*d^2*x + 1/3*(b^4*d*e + 2*a*b^3*e^2)*x^6 + 1/5*(b^4*d^2 + 8*a*b^3*d*e + 6*a^2*b^2*e^2)*x^
5 + (a*b^3*d^2 + 3*a^2*b^2*d*e + a^3*b*e^2)*x^4 + 1/3*(6*a^2*b^2*d^2 + 8*a^3*b*d*e + a^4*e^2)*x^3 + (2*a^3*b*d
^2 + a^4*d*e)*x^2

________________________________________________________________________________________

giac [B]  time = 0.18, size = 260, normalized size = 2.08 \[ \frac {1}{7} \, b^{4} x^{7} e^{2} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{3} \, b^{4} d x^{6} e \mathrm {sgn}\left (b x + a\right ) + \frac {1}{5} \, b^{4} d^{2} x^{5} \mathrm {sgn}\left (b x + a\right ) + \frac {2}{3} \, a b^{3} x^{6} e^{2} \mathrm {sgn}\left (b x + a\right ) + \frac {8}{5} \, a b^{3} d x^{5} e \mathrm {sgn}\left (b x + a\right ) + a b^{3} d^{2} x^{4} \mathrm {sgn}\left (b x + a\right ) + \frac {6}{5} \, a^{2} b^{2} x^{5} e^{2} \mathrm {sgn}\left (b x + a\right ) + 3 \, a^{2} b^{2} d x^{4} e \mathrm {sgn}\left (b x + a\right ) + 2 \, a^{2} b^{2} d^{2} x^{3} \mathrm {sgn}\left (b x + a\right ) + a^{3} b x^{4} e^{2} \mathrm {sgn}\left (b x + a\right ) + \frac {8}{3} \, a^{3} b d x^{3} e \mathrm {sgn}\left (b x + a\right ) + 2 \, a^{3} b d^{2} x^{2} \mathrm {sgn}\left (b x + a\right ) + \frac {1}{3} \, a^{4} x^{3} e^{2} \mathrm {sgn}\left (b x + a\right ) + a^{4} d x^{2} e \mathrm {sgn}\left (b x + a\right ) + a^{4} d^{2} x \mathrm {sgn}\left (b x + a\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^2*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

1/7*b^4*x^7*e^2*sgn(b*x + a) + 1/3*b^4*d*x^6*e*sgn(b*x + a) + 1/5*b^4*d^2*x^5*sgn(b*x + a) + 2/3*a*b^3*x^6*e^2
*sgn(b*x + a) + 8/5*a*b^3*d*x^5*e*sgn(b*x + a) + a*b^3*d^2*x^4*sgn(b*x + a) + 6/5*a^2*b^2*x^5*e^2*sgn(b*x + a)
 + 3*a^2*b^2*d*x^4*e*sgn(b*x + a) + 2*a^2*b^2*d^2*x^3*sgn(b*x + a) + a^3*b*x^4*e^2*sgn(b*x + a) + 8/3*a^3*b*d*
x^3*e*sgn(b*x + a) + 2*a^3*b*d^2*x^2*sgn(b*x + a) + 1/3*a^4*x^3*e^2*sgn(b*x + a) + a^4*d*x^2*e*sgn(b*x + a) +
a^4*d^2*x*sgn(b*x + a)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 189, normalized size = 1.51 \[ \frac {\left (15 e^{2} b^{4} x^{6}+70 x^{5} e^{2} a \,b^{3}+35 x^{5} b^{4} d e +126 x^{4} a^{2} b^{2} e^{2}+168 x^{4} d e a \,b^{3}+21 x^{4} b^{4} d^{2}+105 a^{3} b \,e^{2} x^{3}+315 a^{2} b^{2} d e \,x^{3}+105 a \,b^{3} d^{2} x^{3}+35 x^{2} e^{2} a^{4}+280 x^{2} d e \,a^{3} b +210 x^{2} d^{2} a^{2} b^{2}+105 a^{4} d e x +210 a^{3} b \,d^{2} x +105 d^{2} a^{4}\right ) \left (\left (b x +a \right )^{2}\right )^{\frac {3}{2}} x}{105 \left (b x +a \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(e*x+d)^2*(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

1/105*x*(15*b^4*e^2*x^6+70*a*b^3*e^2*x^5+35*b^4*d*e*x^5+126*a^2*b^2*e^2*x^4+168*a*b^3*d*e*x^4+21*b^4*d^2*x^4+1
05*a^3*b*e^2*x^3+315*a^2*b^2*d*e*x^3+105*a*b^3*d^2*x^3+35*a^4*e^2*x^2+280*a^3*b*d*e*x^2+210*a^2*b^2*d^2*x^2+10
5*a^4*d*e*x+210*a^3*b*d^2*x+105*a^4*d^2)*((b*x+a)^2)^(3/2)/(b*x+a)^3

________________________________________________________________________________________

maxima [B]  time = 0.57, size = 452, normalized size = 3.62 \[ \frac {1}{4} \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a d^{2} x - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{3} e^{2} x}{4 \, b^{2}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} e^{2} x^{2}}{7 \, b} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{2} d^{2}}{4 \, b} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} a^{4} e^{2}}{4 \, b^{3}} - \frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} a e^{2} x}{14 \, b^{2}} + \frac {17 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} a^{2} e^{2}}{70 \, b^{3}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} {\left (2 \, b d e + a e^{2}\right )} a^{2} x}{4 \, b^{2}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} {\left (b d^{2} + 2 \, a d e\right )} a x}{4 \, b} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} {\left (2 \, b d e + a e^{2}\right )} a^{3}}{4 \, b^{3}} - \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {3}{2}} {\left (b d^{2} + 2 \, a d e\right )} a^{2}}{4 \, b^{2}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} {\left (2 \, b d e + a e^{2}\right )} x}{6 \, b^{2}} - \frac {7 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} {\left (2 \, b d e + a e^{2}\right )} a}{30 \, b^{3}} + \frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {5}{2}} {\left (b d^{2} + 2 \, a d e\right )}}{5 \, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^2*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a*d^2*x - 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a^3*e^2*x/b^2 + 1/7*(b^2*x^2
 + 2*a*b*x + a^2)^(5/2)*e^2*x^2/b + 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*a^2*d^2/b - 1/4*(b^2*x^2 + 2*a*b*x + a
^2)^(3/2)*a^4*e^2/b^3 - 3/14*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*a*e^2*x/b^2 + 17/70*(b^2*x^2 + 2*a*b*x + a^2)^(5/
2)*a^2*e^2/b^3 + 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*(2*b*d*e + a*e^2)*a^2*x/b^2 - 1/4*(b^2*x^2 + 2*a*b*x + a^
2)^(3/2)*(b*d^2 + 2*a*d*e)*a*x/b + 1/4*(b^2*x^2 + 2*a*b*x + a^2)^(3/2)*(2*b*d*e + a*e^2)*a^3/b^3 - 1/4*(b^2*x^
2 + 2*a*b*x + a^2)^(3/2)*(b*d^2 + 2*a*d*e)*a^2/b^2 + 1/6*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*(2*b*d*e + a*e^2)*x/b
^2 - 7/30*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*(2*b*d*e + a*e^2)*a/b^3 + 1/5*(b^2*x^2 + 2*a*b*x + a^2)^(5/2)*(b*d^2
 + 2*a*d*e)/b^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (a+b\,x\right )\,{\left (d+e\,x\right )}^2\,{\left (a^2+2\,a\,b\,x+b^2\,x^2\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)*(d + e*x)^2*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2),x)

[Out]

int((a + b*x)*(d + e*x)^2*(a^2 + b^2*x^2 + 2*a*b*x)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b x\right ) \left (d + e x\right )^{2} \left (\left (a + b x\right )^{2}\right )^{\frac {3}{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)**2*(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Integral((a + b*x)*(d + e*x)**2*((a + b*x)**2)**(3/2), x)

________________________________________________________________________________________